117 research outputs found

    Spin-orbit correlation energy in neutron matter

    Full text link
    We study the relevance of the energy correlation produced by the two-body spin-orbit coupling present in realistic nucleon-nucleon potentials. To this purpose, the neutron matter Equation of State (EoS) is calculated with the realistic two-body Argonne v8v_8' potential. The shift occuring in the EoS when spin-orbit terms are removed is taken as an estimate of the spin-orbit correlation energy. Results obtained within the Bethe-Brueckner-Goldstone expansion, extended up to three hole-line diagrams, are compared with other many-body calculations recently presented in the literature. In particular, excellent agreement is found with the Green's function Monte-Carlo method. This agreement indicates the present theoretical accuracy in the calculation of the neutron matter EoS.Comment: 5 pages, 2 figures, 2 tables; to appear in Phys. Rev.

    Final state interaction effects in neutrino-nucleus quasielastic scattering

    Get PDF
    We consider the charged-current quasielastic scattering of muon neutrinos on an Oxygen 16 target, described within a relativistic shell model and, for comparison, the relativistic Fermi gas. Final state interactions are described in the distorted wave impulse approximation, using both a relativistic mean field potential and a relativistic optical potential, with and without imaginary part. We present results for inclusive cross sections at fixed neutrino energies in the range Eν=E_\nu = 200 MeV - 1 GeV, showing that final state interaction effects can remain sizable even at large energies.Comment: 4 pages, 4 figures; poster session of the Third International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04), Gran Sasso (Italy), March 17-21, 2004; to appear in the proceeding

    Lepton mass effects in the Bethe-Heitler process

    Get PDF
    We develop the full finite lepton mass formalism for the production of real photons via the Bethe-Heitler reaction of unpolarized leptons off unpolarized nucleons. Genuine lepton mass effects are described, in particular their dependence upon the lepton mass and the initial beam energy, as well as their sensitivity to the nucleon isospin. In the minimum momentum transfer region, these effects dominate the muon induced proton cross section and become significant for electron scattering at small xBx_B.Comment: Final version including errat

    Neutron matter at low density and the unitary limit

    Get PDF
    Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum kFk_F between 0.4 and 0.8 fm1^{-1}. It is found that the Equation of State is determined by the 1S0^1S_0 channel only, the three-body forces contribution is quite small, the effect of the single particle potential is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to one half of the free gas value throughout the considered density range. A rank one separable representation of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of the calculations below kF=0.4k_F = 0.4 fm1^{-1} does not indicate any pathological behavior of the neutron Equation of State.Comment: 17 pages, 7 figures. To be published in Phys. Rev.

    Looking for strangeness with neutrino-nucleon scattering

    Full text link
    The possibility to determine the axial strange form factor of the nucleon from elastic neutrino-nucleon scattering experiments is studied. The existing experimental information is shortly mentioned and several observables which could be measured in the near future at new neutrino facilities are discussed.Comment: 6 pages, 1 figure, contribution to : "NuFact 03", 5th International Workshop on Neutrino Factories & Superbeams, Columbia University, New York, 5-11 June 200

    Local Fermi gas in inclusive muon capture from nuclei

    Get PDF
    We compare local Fermi gas and shell model in muon capture in nuclei in order to estimate the effect of finite nuclear size in low energy weak reactions.Comment: 6 pages, 8 figures. To be published in the Proceedings of 20th Max Born Symposium, Wroclaw (Poland), December 7-10, 200

    Evolution of the pygmy dipole resonance in nuclei with neutron excess

    Full text link
    The electric dipole excitation of various nuclei is calculated with a Random Phase Approximation phenomenological approach. The evolution of the strength distribution in various groups of isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces E1E1 strength in the low energy region. Indexes to measure the collectivity of the excitation are defined. We studied the behavior of proton and neutron transition densities to determine the isoscalar or isovector nature of the excitation. We observed that in medium-heavy nuclei the low-energy E1E1 excitation has characteristics rather different that those exhibited by the giant dipole resonance. This new type of excitation can be identified as pygmy dipole resonance.Comment: 14 pages, 12 figures, 7 table

    Evolution of the pygmy dipole resonance in nuclei with neutron excess

    Get PDF
    The electric dipole excitation of various nuclei is calculated with a Random Phase Approximation phenomenological approach. The evolution of the strength distribution in various groups of isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces E1E1 strength in the low energy region. Indexes to measure the collectivity of the excitation are defined. We studied the behavior of proton and neutron transition densities to determine the isoscalar or isovector nature of the excitation. We observed that in medium-heavy nuclei the low-energy E1E1 excitation has characteristics rather different that those exhibited by the giant dipole resonance. This new type of excitation can be identified as pygmy dipole resonance.Comment: 14 pages, 12 figures, 7 table
    corecore